[ad_1]
5G Is (Barely) Real
The first wave of 5G has just arrived. On April 3, Verizon started selling the world’s first 5G phone, the Moto Z3 with its attached Moto Mod. AT&T, meanwhile, has been quietly running trials of a 5G hotspot with businesses in 19 cities, getting ready for broader commercial availability later this spring.
We tested both of those systems to see what the early 5G experience is like. And you have to remember: It’s early. Verizon’s 5G in Chicago, right now, only covers parts of downtown and seems to get about 300 feet of distance from each cell site. AT&T’s 5G in Dallas gave us 1.3Gbps speeds and about 600 feet of range—but only at two locations in the city. Neither system can do uploads on 5G yet, and neither has the low latency 5G promises. They’re the first step in many.
5G is an investment for the next decade, and in previous mobile transitions, we’ve seen most of the big changes happening years after the first announcement. Take 4G, for instance. The first 4G phones in the US appeared in 2010. But the sorts of 4G applications that changed our world didn’t appear until later. Snapchat came in 2012, and Uber became widespread in 2013. Video calls over LTE networks also became widespread in the US around 2013.
So following that plan, while we’re getting a little bit of 5G right now, you should expect the big 5G applications to crop up around 2021 or 2022. Until then, things are going to be confusing as wireless carriers jockey for customers and mind share.
5G stands for fifth-generation cellular wireless, and the initial standards for it were set at the end of 2017. But a standard doesn’t mean that all 5G will work the same—or that we even know what applications 5G will enable. There will be slow but responsive
1G, 2G, 3G, 4G, 5G
First of all, if you’re hearing about 5G Wi-Fi or AT&T’s “5G E” phones, they aren’t 5G cellular. Here’s a full explainer on 5G vs. 5G E vs. 5GHz: What’s the Difference?
The G in this 5G means it’s a generation of wireless technology. While most generations have technically been defined by their data transmission speeds, each has also been marked by a break in encoding methods, or “air interfaces,” that make it incompatible with the previous generation.
1G was analog cellular. 2G technologies, such as CDMA, GSM, and TDMA, were the first generation of digital cellular technologies. 3G technologies, such as EVDO, HSPA, and UMTS, brought speeds from 200kbps to a few megabits per second. 4G technologies, such as WiMAX and LTE, were the next incompatible leap forward, and they are now scaling up to hundreds of megabits and even gigabit-level speeds.
5G brings three new aspects to the table: greater speed (to move more data), lower latency (to be more responsive), and the ability to connect a lot more devices at once (for sensors and smart devices).
The actual 5G radio system, known as 5G-NR, isn’t compatible with 4G. But all 5G devices in the US, to start, will need 4G because they’ll lean on it to make initial connections before trading up to 5G where it’s available. That’s technically known as a “non standalone,” or NSA, network. Later, our 5G networks will become “standalone,” or SA, not requiring 4G coverage to work. But that’s a few years off.
4G will continue to improve with time, as well. The Qualcomm X24 modem, which will be built into most 2019 Android flagship phones, will support 4G speeds up to 2Gbps. The real advantages of 5G will come in massive capacity and low latency, beyond the levels 4G technologies can achieve.
That symbiosis between 4G and 5G has caused AT&T to get a little…
Source link
No Comment